

SPIN: a Scalable, Packet Switched, On-chip Micro-network

Adrijean Adriahantenaina (UPMC/LIP6)

Hervé Charlery (UPMC/LIP6)
Alain Greiner (UPMC/LIP6)

Laurent Mortiez (UPMC/LIP6)
Cesar Albenes Zeferino (UFRGS)

Abstract
This paper presents the SPIN micro-network that is a
generic, scalable interconnect architecture for system on
chip. The SPIN architecture relies on packet switching
and point-to-point bi-directional links between the routers
implementing the micro-network. SPIN gives the system
designer the simple view of a single shared address space
and provides a variable number of VCI compliant
communication interfaces for both initiators (masters) and
targets (slaves). Performance comparisons between a
classical PI-bus based interconnect and the SPIN micro-
network are analyzed.

Keywords
Systems -on-Chip. Networks-on-Chip. Embedded Systems.

1. Introduction
The technology scaling improvements will allow the
building of Systems -on-Chip (SoCs) with from several
dozens to hundreds of components within a four-billion-
transistor chip until the end of this decade [1]. This will also
allow the development of new applications in the fields of
telecommunication, entertainment and consumer
electronics. Such systems will require communication
templates providing several dozens of Gbit/s [2], which still
must be reusable to meet time-to-market requirements.

The reusable communication templates typically used in
current SoCs are based on the bus approach, using either a
single shared bus [3] or a hierarchy of buses [4]. However,
such approach has strong drawbacks: A bus does not scale
with the system size as the bandwidth is shared by all the
components attached to it. Furthermore, as the number of
cores increases, the capacitance load grows, degrading the
bus operating frequency.

Some recent works [1][2][5] have proposed the use of
integrated switching networks as an alternative approach to
interconnect cores in SoCs. The overall idea is that such
networks, also called Networks-on-Chip (NoCs), meet three

of the major key communication requirements for future
SoCs: reusability, scalability, and parallelism.

This work presents the evaluation and comparison of two
on-chip communication templates based on bus and NoC
approaches. The communication architectures are compared
by simulating cycle-true, RT-level models running synthetic
workloads.

This paper is structured as follows. In section 2, we present
the generic architecture used to compare the two
communication templates, which are described in section 3.
The bit-true, cycle-true simulation environment is presented
in section 4. A first experiment analyzing the global latency
as a function of the number of terminals is presented in
section 5. A second experiment describing the latency as a
function of the offered load is described in section 6.
Finally, section 7 presents some concluding remarks.

2. The Generic Architecture
The architecture used in this work to evaluate and compare
the performance of the two communication architectures is
shown in Figure 1. It is based on two kinds of components:
initiators and targets. The system can have different number
of cores for each type. The "initiator" components are
traffic generators, which send requests to the "target"
components. The "target" component sends a response as
soon as it receives a request.

target

vci

target1

native
vci

target

vci

target0

native
vci

init

vci

init1

native
vci

init

vci

init0

native
vci

Communication Architecture

wrappers

cores

terminals

Figure 1. The reference system.

All the components in the system are VCI-compliant [6] and,
since the communication architectures are typically based

on a native communication protocol, each one of them uses
a wrapper to adapt both protocols, as is shown in Figure 1.

In the VCI standard, all initiators share the same address
space. An initiator sends a read or write request to a target
that is identified by the address msb bits or by using a
point-to-point connection. The target processes the request
and sends a response to the former. In the advanced VCI
standard, an initiator can issue a new request without
waiting for a response to the first request, due to the use of
a split protocol. Requests (and responses) must be tagged
with identifiers, which allows such requests and requests
threads to be interleaved and even allows responses to
arrive in a different order (which can occur in a network-
based architecture using adaptive routing). Such feature is
only available in the Advanced VCI, which is the VCI level
used in this work.

3. Communication Architectures
The on-chip communication architectures evaluated in this
work are based on real templates. The first one is PI-Bus [3],
which is an on-chip bus specified by the Open
Microprocessors Initiative (OMI). The other one, is SPIN
[2], an experimental on-chip network developed by the LIP6
laboratory at University Pierre et Marie Curie in Paris. Such
architectures are described in the following paragraphs.

3.1 PI-Bus
PI-Bus is a processor independent and demultiplexed
architecture with data and address buses scalable up to 32
bits. It is multimaster capable and needs a bus controller for
operation. Such controller must implement a mechanism to
arbitrate which master is granted the requested bus
ownership. The bus controller is also responsible to perform
the address decoding, in order to determine the target of a
bus operation, and other functions as time-out control and
slave access control. Masters and slaves require VCI/PI
wrappers to be connected to PI-Bus.

3.2 SPIN
SPIN (Scalable Programmable Interconnection Network)
is a packet switching on-chip micro-network, which uses
wormhole switching, adaptive routing and credit-based flow
control. It is based on a fat-tree topology, which is a tree
structure with routers on the nodes and terminals on the
leaves, except that every node has replicated fathers. In a
full 4-ary fat-tree topology, illustrated in Figure 2, there are
as many fathers as children on all nodes (routers). Such
topology produces a non-blocking network with a
performance that scales gracefully with the system size.

Links are bi-directional and full-duplex, with two
unidirectional channels. The channel's width is 36-bit wide,
with 32 data bits and 4 tags bits used for packet framing,

parity and error signaling. Additionally, there are two flow
control signals used to regulate the traffic on the channel.

In SPIN, packets are defined as sequences of 32-bits data
words, with the header fitting in the first word. A 8-bit field
in the header is used to identify the destination terminal,
allowing the network to scale up to 256 terminals. The
payload has unlimited length defined by two framing bits
(Begin Packet / End of Packet).

1st level
routers

2nd level
routers

terminals

from/to children
from/to fathers

from/to children
there is no father

123456789 01112131415 10

Figure 2. A 16-terminal SPIN network.

 SPIN uses wormhole switching, which is a packet switching
approach in which a router can forward a packet as soon it
receives the packet header. The packet is broken up into
flits (flow control unit), which are the small units over which
the flow control is done, and them it is pipelined through
the network at the flit level. In SPIN, a flit is only one word
(36 bits). The input buffers have a depth of 4 words, which
results in cheap routers.

Routing in SPIN is adaptive and distributed. When a packet
flows up the tree, each router can choose anyone of the
available links to forward the packet. When it reaches a
router that is a common ancestor with the destination
terminal, the packet is turned around and then it is
forwarded by using a deterministic path (the only one
between the ancestor router and the destination terminal).
Such approach reduces contention in the network,
improving the message latency and the network
throughput.

The basic building block of the SPIN network is the RSPIN
router shown in Figure 3. It includes eight ports, each one
with a pair of input and output channels compliant with the
SPIN link. Internally, RSPIN includes a 4-words buffer at
each input channel and two 18-words output buffers,
shared by the output channels. They have a greater priority
when competing with the input buffer to use an output
channel, which allows to reduce the contention, whilst
minimizing the head-of-line blocking by freeing the queues
in the input buffers.

RSPIN contains a partial 10×10 crossbar, which implements
only the connections allowed by the routing scheme: all the
packets flowing down the tree can be forwarded to children
and only such packets can use the output buffers when the
required output channel is busy. Nevertheless, only the

packets incoming from children can flow up the tree and be
forwarded to the fathers.

10x10
Partial

Crossbar

R
ot

ut
in

g
Lo

gi
c

18-flit shared output buffers

Channel
outgoing
to the
fathers

Channels
outgoing
to the
children

Channels
incoming
from the
fathers

Channels
incoming
from the
children

4-flit input buffers

Figure 3. Organization of RSPIN.

4. The Simulation Environment
To evaluate and compare the communication architectures,
we used a cycle-precise simulator named CASS (Cycle-
Accurate System Simulator), developed at LIP6 [7].

The CASS simulator can be described as a simulation
accelerator for the well-known SystemC simulation
environment. This simulator engine is cycle-based and can
be used for a special class of SystemC simulation models:
The abstraction level must be RTL, and each component
should be described as a set of communicating finite state
machines. With the present version of CASS, the system
architecture is specified as a structural VHDL file which
instantiates the components and defines the
interconnection net-list.

In this work, cycle-accurate CASS/SystemC simulation
models have been written for the RSPIN router, and the
VCI/SPIN wrappers. All those models were derived from the
corresponding synthesizable VHDL models. Therefore,
those models are both cycle-accurate and bit-accurate. The
same approach was used for the PI/VCI wrappers, and the
PI-bus controller.

5. Latency/Number of Terminals
This section presents some initial results for a basic
workload applied to 4-, 8-, 16-, 32-cores symmetrical systems
based on PI-bus and SPIN. Figure 4 shows a 4-terminals
symmetric system with 2 initiators (init0 and init1) and two
targets (target0 and target1).

5.1 The workload
In this first experiment, we intended to measure the number
of cycles spent by the communication architecture to

deliver all the request and response messages in a pooling.
A pooling is defined as the messages exchanged when
each initiator sends a request to each target. For instance, in
a 4 components system like the one of Figure 4, a pooling
will have 4 request messages and 4 response messages. In
Figure 4, one can see the request messages sent by init0 to
target0 and target1.

It must be highlighted that channels in SPIN are 32-bit
words. Therefore a single-data VCI write transaction is
packed into a 3-word SPIN packet (header+address+data).

target

vci

target1

native
vci

target

vci

target0

native
vci

init

vci

init1

native
vci

init

vci

init0

native
vci

Figure 4. The pooling workload

5.2 Experimental results
Figure 5 presents the number of cycles spent by the PI-Bus
and SPIN architectures to perform a pooling in symmetrical
systems with different sizes. As one can see, for this
workload, SPIN outperforms PI-Bus only in systems with
more than a dozen of cores. However, the message size
used in this work can be considered the worst case for a
network like SPIN. For larger packets, such as a cache line
transfer, the performance of SPIN is improved, because the
costs of the packet header overhead decreases as the
packet payload increases.

Figure 6 presents the number of cycles spent by the SPIN
architecture when the initiators are disabled to use the split
protocol of VCI. As one can see, if the split protocol is not
used, the message latency becomes significantly greater,
and if one compares the numbers for Tables 1 and 2, one
can observe that SPIN will not overcome PI-Bus without
using the split protocol.

0

100

200

300

400

500

600

4 8 16 32

Number of Cores

N
u

m
b

er
 o

f C
yc

le
s

PI-Bus
SPIN

Figure 5. PI-Bus / SPIN for several system sizes

0,0

100,0

200,0

300,0

400,0

500,0

600,0

700,0

4,0 8,0 16,0 32,0

Number of Cores

N
u

m
b

er
 o

f C
yc

le
s

Not split
Split

Figure 6. SPIN: split / not-split transactions

6. Latency/Load
In any interconnection architecture, there is a saturation
threshold, appearing when too many initiators are trying to
generate too much traffic. In this new experiment, we intend
to measure the saturation threshold for both the PI-bus and
the SPIN architecture, as a function of the offered load.

6.1 The workload
We focus on a symmetrical, 32 terminals network (16
initiators / 16 targets). This network contains 16 routers and
32 wrappers. Each VCI initiator sends request packets with a
length L of 8 words (actually, a cache line read). The cache
line addresses are randomly distributed between all VCI
targets.

The variable parameter is the offered load. The gap G is the
number of cycles between two successive request packets
sent by the same initiator. In this workload, G is a random
variable whose average value GM can be precisely
controlled. The offered load is the percentage of the
channel bandwidth used by each initiator. With the above
definitions, the offered load is L / (L + GM). An offered load
of 100% corresponds to the case GM = 0.

In order to take into account the contention of the
interconnect architecture (PI-bus or SPIN), and have a
meaningful latency measurement, the requests have a
timestamp, and are stored in an "infinite" FIFO located in
each initiator. The latency is measured from the date of the
initiator request to the reception of the response packet by
the initiator. We use the split transaction feature of the VCI
interface.

6.2 Experimental results
Figure 7 presents the average latency versus offered load
obtained for the 32 terminals SPIN network (16 initiators / 16
targets). The simulation has been done for about 100K
request/response transactions. In this experiment, the
shared output buffers of the RSPIN router were disabled. It

appears that the SPIN micro-network has a latency of about
30 cycles, and saturates for an offered load of 28 %.

As expected, for very small load, the PI-bus has a lower
latency than the SPIN network, but the saturation threshold
appears for an offered load larger than 4%.

Figure 7. SPIN latency / load

7. Conclusion
This work presented a performance comparison between
two on-chip interconnect: a classical system bus, and the
SPIN micro-network. The initial results show that for a
workload with short messages, SPIN outperforms PI-Bus in
systems with a dozen of terminals or greater. Moreover, for
a 32 terminal architecture, the SPIN micro-network supports
an offered load of 30%, where the PI-bus saturates for an
offered load larger than 4%.

References
[1] L. Benini, G. De Micheli, «Networks on Chips: A New

SoC Paradigm», IEEE Computer, Jan. 2002, pp.70-78.
[2] P. Guerrier, A. Greiner, “A generic architecture for on-

chip packet-switched interconnections, DATE’2000.
 [3] Siemens, OMI 324: PI-Bus – Ver.0.3d. Munich,

Siemens AG, 1994.
 [4] IBM CoreConnect Bus Architecure, http://www-

3.ibm.com/chips/products/coreconnect/index.html
 [5] W. J. Dally and B. Towles, «Route Packets, Not Wires:

On-Chip Interconnection Networks», DAC’2001.
 [6] Virtual Socket Interface Alliance, Virtual Component

Interface Standard, OCB 2.1.0 , March 2000.
 [7] Pétrot Frédéric, Hommais Denis, Greiner Alain, "A

Simulation Environment for Core Based Embedded
Systems" Proceeding of the 30th Annual Simulation
Symposium, Atlanta, Georgia, April 1997, pp. 86-91.

	Main Page
	DF'03
	Front Matter
	Table of Contents
	Author Index

