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Abstract 
This paper presents the SPIN micro-network that is a 
generic, scalable interconnect architecture for system on 
chip. The SPIN architecture relies on packet switching 
and point-to-point bi-directional links between the routers 
implementing the micro-network. SPIN gives the system 
designer the simple view of a single shared address space 
and provides a variable number of VCI compliant 
communication interfaces for both initiators (masters) and 
targets (slaves).  Performance comparisons between a 
classical PI-bus based interconnect and the SPIN micro-
network are analyzed. 
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1. Introduction 
The technology scaling improvements will allow the 
building of Systems -on-Chip (SoCs) with from several 
dozens to hundreds of components within a four-billion-
transistor chip until the end of this decade [1]. This will also 
allow the development of new applications in the fields of 
telecommunication, entertainment and consumer 
electronics. Such systems will require communication 
templates providing several dozens of Gbit/s [2], which still 
must be reusable to meet time-to-market requirements. 

The reusable communication templates typically used in 
current SoCs are based on the bus approach, using either a 
single shared bus [3] or a hierarchy of buses [4]. However, 
such approach has strong drawbacks: A bus does not scale 
with the system size as the bandwidth is shared by all the 
components attached to it. Furthermore, as the number of 
cores increases, the capacitance load grows, degrading the 
bus operating frequency.  

Some recent works [1][2][5] have proposed the use of 
integrated switching networks as an alternative approach to 
interconnect cores in SoCs. The overall idea is that such 
networks, also called  Networks-on-Chip (NoCs), meet three 

of the major key communication requirements for future 
SoCs: reusability, scalability, and parallelism. 

This work presents the evaluation and comparison of two 
on-chip communication templates based on bus and NoC 
approaches. The communication architectures are compared 
by simulating cycle-true, RT-level models running synthetic 
workloads.  

This paper is structured as follows. In section 2, we present 
the generic architecture used to compare the two 
communication templates, which are described in section 3. 
The bit-true, cycle-true simulation environment is presented 
in section 4. A first experiment analyzing the global latency 
as a function of the number of terminals is presented in 
section 5. A second experiment describing the latency as a 
function of the offered load is described in section 6. 
Finally, section 7 presents some concluding remarks. 

2. The Generic Architecture 
The architecture used in this work to evaluate and compare 
the performance of the two communication architectures is 
shown in Figure 1. It is based on two kinds of components: 
initiators and targets. The system can have different number 
of cores for each type. The "initiator" components are 
traffic generators, which send requests to the "target" 
components. The "target" component sends a response as 
soon as it  receives a request.  
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Figure 1. The reference system.  

All the components in the system are VCI-compliant [6] and, 
since the communication architectures are typically based 



on a native communication protocol, each one of them uses 
a wrapper to adapt both protocols, as is shown in Figure 1. 

In the VCI standard, all initiators share the same address 
space. An initiator sends a read or write request to a target 
that is identified by the address msb bits or by using a 
point-to-point connection. The target processes the request 
and sends a response to the former. In the advanced VCI 
standard, an initiator can issue a new request without 
waiting for a response to the first request, due to the use of 
a split protocol. Requests (and responses) must be tagged 
with identifiers, which allows such requests and requests 
threads to be interleaved and even allows responses to 
arrive in a different order (which can occur in a network-
based architecture using adaptive routing). Such feature is 
only available in the Advanced VCI, which is the VCI level 
used in this work. 

3. Communication Architectures 
The on-chip communication architectures evaluated in this 
work are based on real templates. The first one is PI-Bus [3], 
which is an on-chip bus specified by the Open 
Microprocessors Initiative (OMI). The other one, is SPIN 
[2], an experimental on-chip network developed by the LIP6 
laboratory at University Pierre et Marie Curie in Paris. Such 
architectures are described in the following paragraphs. 

3.1 PI-Bus 
PI-Bus is a processor independent and demultiplexed 
architecture with data and address buses scalable up to 32 
bits. It is multimaster capable and needs a bus controller for 
operation. Such controller must implement a mechanism to 
arbitrate which master is granted the requested bus 
ownership. The bus controller is also responsible to perform 
the address decoding, in order to determine the target of a 
bus operation, and other functions as time-out control and 
slave access control. Masters and slaves require VCI/PI 
wrappers to be connected to PI-Bus.  

3.2 SPIN 
SPIN (Scalable Programmable Interconnection Network) 
is a packet switching on-chip micro-network, which uses 
wormhole switching, adaptive routing and credit-based flow 
control. It is based on a fat-tree topology, which is a tree 
structure with routers on the nodes and terminals on the 
leaves, except that every node has replicated fathers. In a 
full 4-ary fat-tree topology, illustrated in Figure 2, there are 
as many fathers as children on all nodes (routers). Such 
topology produces a non-blocking network with a 
performance that scales gracefully with the system size. 

Links are bi-directional and full-duplex, with two 
unidirectional channels. The channel's width is 36-bit wide, 
with 32 data bits and 4 tags bits used for packet framing, 

parity and error signaling. Additionally, there are two flow 
control signals used to regulate the traffic on the channel. 

In SPIN, packets are defined as sequences of 32-bits data 
words, with the header fitting in the first word. A 8-bit field 
in the header is used to identify the destination terminal, 
allowing the network to scale up to 256 terminals. The 
payload has unlimited length defined by two framing bits 
(Begin Packet / End of Packet). 
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Figure 2. A 16-terminal SPIN network. 

 SPIN uses wormhole switching, which is a packet switching 
approach in which a router can forward a packet as soon it 
receives the packet header. The packet is broken up into 
flits (flow control unit), which are the small units over which 
the flow control is done, and them it is pipelined through 
the network at the flit level. In SPIN, a flit is only one word 
(36 bits). The input buffers have a depth of 4 words, which 
results in cheap routers. 

Routing in SPIN is adaptive and distributed. When a packet 
flows up the tree, each router can choose anyone of the 
available links to forward the packet. When it reaches a 
router that is a common ancestor with the destination 
terminal, the packet is turned around and then it is 
forwarded by using a deterministic path (the only one 
between the ancestor router and the destination terminal). 
Such approach reduces contention in the network, 
improving the message latency and the network 
throughput.  

The basic building block of the SPIN network is the RSPIN 
router  shown in Figure 3. It includes eight ports, each one 
with a pair of input and output channels compliant with the 
SPIN link. Internally, RSPIN includes a 4-words buffer at 
each input channel and two 18-words output buffers, 
shared by the output channels. They have a greater priority 
when competing with the input buffer to use an output 
channel, which allows to reduce the contention, whilst 
minimizing the head-of-line blocking by freeing the queues 
in the input buffers. 

RSPIN contains a partial 10×10 crossbar, which implements 
only the connections allowed by the routing scheme: all the 
packets flowing down the tree can be forwarded to children 
and only such packets can use the output buffers when the 
required output channel is busy. Nevertheless, only the 



packets incoming from children can flow up the tree and be 
forwarded to the fathers.  

10x10
Partial

Crossbar

R
ot

ut
in

g 
Lo

gi
c

18-flit shared output buffers

Channel
outgoing
to the
fathers

Channels
outgoing
to the
children

Channels
incoming
from the
fathers

Channels
incoming
from the
children

4-flit input buffers

 

Figure 3. Organization of RSPIN. 

4. The Simulation Environment 
To evaluate and compare the communication architectures, 
we used a cycle-precise simulator named CASS (Cycle-
Accurate System Simulator), developed at LIP6 [7].  

The CASS simulator can be described as a simulation 
accelerator for the well-known SystemC simulation 
environment. This simulator engine is cycle-based and can 
be used for a special class of SystemC simulation models: 
The abstraction level must be RTL, and each component 
should be described as a set of communicating finite state 
machines. With the present version of CASS, the system 
architecture is specified as a structural VHDL file which 
instantiates the components and defines the 
interconnection net-list.  

In this work, cycle-accurate CASS/SystemC simulation 
models have been written for the RSPIN router, and the 
VCI/SPIN wrappers. All those models were derived from the 
corresponding synthesizable VHDL models. Therefore, 
those models are both cycle-accurate and bit-accurate. The 
same approach was used for the PI/VCI wrappers, and the 
PI-bus controller. 

5. Latency/Number of Terminals 
This section presents some initial results for a basic 
workload applied to 4-, 8-, 16-, 32-cores symmetrical systems 
based on PI-bus and SPIN. Figure 4 shows a 4-terminals 
symmetric system with 2 initiators (init0 and init1) and two 
targets (target0 and target1). 

5.1 The workload 
In this first experiment, we intended to measure the number 
of cycles spent by the communication architecture to 

deliver all the request and response messages in a pooling. 
A pooling is defined as the messages exchanged when 
each initiator sends a request to each target. For instance, in 
a 4 components system like the one of Figure 4, a pooling 
will have 4 request messages and 4 response messages. In 
Figure 4, one can see the request messages sent by init0 to 
target0 and target1. 

It must be highlighted that channels in SPIN are 32-bit 
words. Therefore a single-data VCI write transaction is 
packed into a 3-word SPIN packet (header+address+data).  
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Figure 4. The pooling workload 

5.2 Experimental results 
Figure 5 presents the number of cycles spent by the PI-Bus 
and SPIN architectures to perform a pooling in symmetrical 
systems with different sizes. As one can see, for this 
workload, SPIN outperforms PI-Bus only in systems with 
more than a dozen of cores. However, the message size 
used in this work can be considered the worst case for a 
network like SPIN. For larger packets, such as a cache line 
transfer, the performance of SPIN is improved, because the 
costs of the packet header overhead decreases as the 
packet payload increases.  

Figure 6 presents the number of cycles spent by the SPIN 
architecture when the initiators are disabled to use the split 
protocol of VCI. As one can see, if the split protocol is not 
used, the message latency becomes significantly greater, 
and if one compares the numbers for Tables 1 and 2, one 
can observe that SPIN will not overcome PI-Bus without 
using the split protocol. 
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Figure 5. PI-Bus / SPIN for several system sizes 
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Figure 6. SPIN: split / not-split transactions 

6. Latency/Load  
In any interconnection architecture, there is a saturation 
threshold, appearing when too many initiators are trying to 
generate too much traffic. In this new experiment, we intend 
to measure the saturation threshold for both the PI-bus and 
the SPIN architecture, as a function of the offered load.  

6.1 The workload 
We focus on a symmetrical, 32 terminals network (16 
initiators / 16 targets). This network contains 16 routers and 
32 wrappers. Each VCI initiator sends request packets with a 
length L of 8 words (actually, a cache line read). The cache 
line addresses are randomly distributed between all VCI 
targets.  

The variable parameter is the offered load. The gap G is the 
number of cycles between two successive request packets 
sent by the same initiator. In this workload, G is a random 
variable whose average value GM can be precisely 
controlled. The offered load is the percentage of the 
channel bandwidth used by each initiator. With the above 
definitions, the offered load is L / (L + GM). An offered load 
of 100% corresponds to the case GM = 0.  

In order to take into account the contention of the 
interconnect architecture (PI-bus or SPIN), and have a 
meaningful latency measurement, the requests have a 
timestamp, and are stored in an "infinite" FIFO located in 
each initiator. The latency is measured from the date of the 
initiator request to the reception of the response packet by 
the initiator. We use the split transaction feature of the VCI 
interface.  

6.2 Experimental results 
Figure 7 presents the average latency versus offered load 
obtained for the 32 terminals SPIN network (16 initiators / 16 
targets). The simulation has been done for about 100K 
request/response transactions. In this experiment, the 
shared output buffers of the RSPIN router were disabled. It 

appears that the SPIN micro-network  has a latency of about 
30 cycles, and saturates for an offered load of 28 %.  

As expected, for very small load, the PI-bus has a lower 
latency than the SPIN network, but the saturation threshold 
appears for an offered load larger than 4%. 

 

Figure 7. SPIN latency / load 

7. Conclusion 
This work presented a performance comparison between 
two on-chip interconnect: a classical system bus, and the 
SPIN micro-network. The initial results show that for a 
workload with short messages, SPIN outperforms PI-Bus in 
systems  with a dozen of terminals or greater. Moreover, for 
a 32 terminal architecture, the SPIN micro-network supports 
an offered load of 30%, where the PI-bus saturates for an 
offered load larger than 4%.  
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